Nitride Powder

  • 0
  • 0

High Purity Lithium Nitride Li3N Powder CAS 26134-62-3, 99.99%

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Lithium nitride, a metal nitrogen, has the chemical formula Li3N. This solid is purple or red and shows a light-green luster when lit by reflected light. Purity: 99.99%
Particle Size: 100 mesh

Lithium Nitride Li3N: Powder Description
Li3N is a compound name. It is a good idea to use a bilingual translator Lithium Nitride The following are some examples of how to use Trilithium nitride . Lithium nitride has a high conductivity and is a fast-ionic conductor. Many studies have concentrated on the application. Compound of lithium nitride Solid cathode or electrode for batteries.
What is Li3N called in the correct terminology?
Lithium nitride, or Li3N is the correct name. Formulation of lithium nitride It is called Li3N.
As a fast-ion conductor, the material should have a high decomposition voltage and a lower electronic conductivity. However, a higher ionic conducting property, as well as better chemical stability, is desirable.
Does Lithium Nitride Burn in the Air?
Uniquely, lithium reacts also with nitrogen in the atmosphere to form lithium-nitride. If heated in the atmosphere, Lithium produces a strong red flame. Lithium also reacts with nitrogen in the atmosphere to produce lithium nitride. The above characteristics are found in many of the lithium fast-ion conducting materials. These can be used as a power source for electronic devices, calculators, cameras, watches, electronic flashes and other electronic products.
What type of bonding is lithium nitride made up of?
Lithium Nitride Li3N: Ionic bond.
Li3N is it covalent or ionic?
Lithium Nitride is a cationic compound. Li's electronegativity is 0.98 while nitrogen's value is 3.04. Many people have imagined large energy storage reactors (electric) using lithium fast ion conducting materials. Electricity can be stored in energy storage stations when peak consumption occurs late at night. During times of peak consumption, power should be continuously supplied to the grid. The wide application possibilities of lithium-fixed ion conductors have arouse great interest. To find better lithium-fixed-ion conductors people have carried out extensive and detailed research.
It is a global trusted brand Lithium Nitride Supplier . Please send us an inquiry regarding the latest Lithium Nitride price At any time.

How is Lithium Nitride Li3N produced?
It was discovered by the end of 19th century. Lithium Nitride can be made easily with a mixture of elements. Zintl und Brauer discovered the hexagonal structure in lithium nitride for the first time in 1935. It is 2 is Charge of lithium Nitride . In 1976 Rabenau, and Schultz defined this structure by using single-crystal-X-ray-diffraction.
Research on the reactions between lithium nitride (Li3NH4) and hydrogen started in the early twentieth century. Dafert und Miklauz discovered at 220-250degC that lithium nitride, hydrogen, and a substance named "Li3NH4" are formed. Continue heating the substance to decompose into "Li3NH2", components with higher temperatures (> 700degC), substances, and hydrogen. Ruff and Georges discovered later that the "Li3NH4" substance was Li2NH+ LiH and the "Li3NH2", LiNH2+ 2 LiH.
In many areas, lithium nitride can be found today. The ionization model can explain Li3N's catalytic action under high temperatures and normal pressures. It also explains its role as a nitrogen source in solvothermal methods.
Li3N is prepared by reacting Li2 with N2 at 500degC. It is a catalyst that can be used to synthesize cBN under high pressure and temperature. It can also act as a catalyst for the formation of hBN at normal pressure and temperature.

Lithium Nitride Li3N Applications:
Lithium Nitride comes in a brownish red solid, or as a sand like powder. It is used in reducing agents.
What is the purpose of lithium nitride?
Lithium nitride is useful in many fields.
1. Solid electrolyte
Lithium nitride has a higher conductivity than other inorganic sodium salts. The application of lithium as a cathode and solid electrode material in batteries has been the focus of many studies.
As a fast-ion conductor, the material should have better chemical and physical stability, a higher decomposition temperature, lower electronic conductivity. The above characteristics are found in many lithium fast-ion conducting materials. They can be used for the production of solid-state batteries that have high performance.
Previously, it was thought that lithium-fast ion conductors could be used to construct large energy storage reactors (electric). Electricity can be stored in energy storage stations when peak consumption hours are late at nights. During peak periods of electricity consumption, the grid is continually supplied with power. The wide application possibilities of lithium fixed-ion conductors have aroused a lot of interest. To find better lithium-fixed ion conductors people have carried out extensive and detailed research.
2. Preparation for cubic boron Nitride
Lithium nitride has many uses, including as an electrolyte. It is also a catalyst that can convert hexagonal Boron Nitride into cubic Boron Nitride.
In 1987 Japanese scientists obtained an N type cBN single-crystal with a diameter 2 mm, an irregular shape. Then, they grew a Be doped P-type crystal on top of it. By cutting and grinding the secondary high-pressure single crystal cBN on the surface of the crystal, the uniform PN junction cBN is finally obtained.
China has also conducted similar synthesis experiments. The experiment took place on a domestic DS-029B top press with six sides. To study the effect on the shape of the cBN samples synthesized in high pressure using lithium nitride and lithium hydride as catalysts and hBN of 99% purity as the starting material, this experiment used lithium nitride and lithium hydride as self-made catalysts. A commercially-available lithium amide LiNH2 with 99% purity was also used as an additive.
As an addition to these experiments, using the phase change method and hexagonal boran nitride, a cubic boron-nitride has been synthesized with different additives. X-ray diffraction and Raman diffraction technologies were used. It is possible to conclude, after analyzing and describing the experimental products that additives have a different effect on the system.
3. Layer of organic light-emitting devices with an electron injection layer
The organic light-emitting device (OLED) has a solid-state active light emitting, wide viewing angles, fast response times (1ms), large operating temperatures (-45 - +85), and flexible materials can be produced. High power consumption and low power unit consumption are considered by the industry to be the benefits of next-generation display and lighting technologies. OLED performance has improved significantly with the application of new organic materials and organic device structures.
In order to improve OLED device performance, Lithium Nitride (Li3N), a n-type nitride, is added as a dopant into the eight-hydroxyquinoline (Alq3) layers of aluminum. Li 3N has been reported for electron injection layers and cathodes. A buffer layer can improve the performance. During the process of evaporation Li3N is decomposed into Li2 and N2. Only Li can deposit on the device and N2 is not detrimental to its performance. Experiments have shown that an Alq3 doped with Li3N layer can be effectively used as an electron-injection layer to improve the OLED efficiency and reduce its operating voltage.

Lithium Nitride Li3N Product Performance:
Our lithium nitride is high-purity, ultrafine particles size and larger surface area.

Technical Data for Lithium Nitride Li3N:
Part Name High Purity Nitride Powder
MF Li3N
Purity 99.99%
Particle Size -100 mesh
Useful Information It is used as a reaction material or catalyst in organic syntheses.
Specification of Lithium Nitride Li3N:


Lithium Nitride Li3N - Powder - Packing & Shipping
The amount of Li3N powder in the packaging will determine which type we use.
Lithium nitride powder Li3N: Vacuum packaging 100g,500g or 1kg/bag or barrel.
Lithium nitride powder Li3N shipping After payment, you can ship your order by sea, air, or express as soon possible.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality nanomaterials. These include boride powders, graphite particles, sulfide particles, 3D-printing powders, etc.
Contact us today to receive a quote for our high-quality Lithium Nitride Powder. ( brad@ihpa.net )

Properties of Lithium Nitride

Alternative Names Trilithium Nitride, Trilithium Azanide, Li3N Powder
CAS Number 26134-62-3
Compound Formula Li3N
Molecular Mass 36.8456
Appearance Purple or red powder
Melting Point N/A
Boiling Point N/A
Density 1.3 g/cm3
Solubility In H2O N/A
Exact Mass 37.0667

Lithium Nitride Health & Safety Information

Sign Word Danger
Hazard Statements H260-H314
Hazard Codes F. C.
Risk Codes 11-14-29-34
Safety Declarations 16-22-26-27-36/37/39-45
Transport Information UN 2806 4.3/PG 1,

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size : 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfid…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder boride is a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size : 5-10um Molybdenum Boride MoB2 Pulp : Molybdenum-boride consists of moly…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…