News

  • 0
  • 0

Graphene bags significantly reduce platinum requirements for hydrogen fuel cells

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



After Russia pledged to scale back its military operations around Kyiv and in northern Ukraine, the prices of most industrial metals fell, led by aluminum, showing people's concerns for supply shortage eased.

At an earlier time, the West imposed sweeping sanctions on Russia for its invasion of Ukraine, which aroused concerns about the supply problem because Russia is a major producer of nickel, aluminum, and copper. 

Russia is also a major gas supplier to Europe, where potential supply disruptions are seen as hitting power-intensive aluminum and zinc graphene powder are still very uncertain.

Although hydrogen fuel is a promising alternative to fossil fuels, the catalyst it relies on for power generation is mainly composed of rare and expensive metal platinum, which limits the wide commercialization of hydrogen fuel. Researchers at the University of California, Los Angeles reported a way to enable them to meet and exceed the goals set by the U.S. Department of Energy (DOE) for high catalyst performance, high stability, and low platinum utilization.

 

The record-breaking technique uses tiny crystals of platinum-cobalt alloy, each embedded in a nano-bag made of graphene.

 

Compared with the DOE catalyst standard, graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity; 65% higher power; about 20% higher catalytic activity at the end of the fuel cell's expected life; about 35% lower power loss after 7000 hours of simulated use of 6000 ran, exceeding the target of 5000 hours for the first time; and almost 40% less platinum needed per car.

 

Graphene-coated alloys produced extraordinary results: 75 times higher catalytic activity and 65% higher power. At the end of the expected life of the fuel cell, the catalytic activity increased by about 20%, and the power loss was reduced by about 35% after 7000 hours of simulated use, exceeding the target of 5000 hours for the first time.

 

Today, half of the world's total supply of platinum and similar metals is used in catalytic converters for fossil fuel-powered cars, which can reduce the harmfulness of their emissions. Each car needs 2 Mel and 8 grams of platinum. By contrast, current hydrogen fuel cell technology consumes about 36 grams of platinum per vehicle. At the minimum platinum load tested by the research team, only 6.8 grams of platinum were needed for each hydrogen-powered vehicle.

 

So how do researchers get more energy from less platinum? They decomposed the platinum-based catalyst into particles with an average length of 3 nanometers. Smaller particles mean a larger surface area and more room for catalytic activity. However, smaller particles tend to squeeze together to form larger particles.

 

The team solved this limitation by loading their catalyst particles into the 2D material graphene. Compared with the bulk carbon commonly found in coal or pencil lead, this thin carbon layer has amazing capacity, conducts electricity and heat efficiently, and is 100 times stronger than steel of similar thickness.

 

Their platinum-cobalt alloy is reduced to particles. Before being integrated into fuel cells, these particles are surrounded by graphene nano-bags, which also act as an anchor to prevent particle migration, which is necessary for the level of durability required for commercial vehicles. At the same time, graphene allows a tiny gap of about 1 nanometer around each catalyst nanoparticles, which means that critical electrochemical reactions may occur.

 

Graphene Price

The price is influenced by many factors including the supply and demand in the market, industry trends, economic activity, market sentiment, and unexpected events.

If you are looking for the latest graphene powder price, you can send us your inquiry for a quote. (sales1@rboschco.com)

 

Graphene Supplier

RBOSCHCO is a trusted global chemical material supplier&manufacturer with over 12-year-experience in providing super high-quality chemicals and nanomaterials. The company export to many countries including the USA, Canada, Europe, UAE, South Africa, Tanzania, Kenya, Egypt, Nigeria, Cameroon, Uganda, Turkey, Mexico, Azerbaijan, Belgium, Cyprus, Czech Republic, Brazil, Chile, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia, Germany, France, Italy, Portugal, etc.

As a leading nanotechnology development manufacturer, RBOSCHCO dominates the market. Our professional work team provides perfect solutions to help improve the efficiency of various industries, create value, and easily cope with various challenges.

 

If you are looking for graphene powder, please send an email. (sales1@rboschco.com)


Recently, the Turkish government announced that the Turkish President has signed a presidential decree to provide incentives for its Black Sea gas field development projects, including tax exemptions and other preferential measures.  

With a fixed investment of 145.1 billion Turkish lira ($10 billion), the project will employ 1,018 people and produce 14 billion standard cubic meters of gas per year, the decree reads. The incentives involved include tariff and VAT exemptions, as well as a range of tax cuts.

In June 2021, Turkish drill ships discovered 135 billion cubic meters of natural gas in the Sakaria field in the Black Sea, bringing Turkey's total gas discoveries in the region to 540 billion cubic meters.  

Turkey imports almost all of its annual gas consumption of about 50 billion cubic meters.  

Except for natural gas, the supply and prices of many other graphene powder will continue to be influenced by international situations.

Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size : 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfid…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder boride is a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size : 5-10um Molybdenum Boride MoB2 Pulp : Molybdenum-boride consists of moly…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…