News

  • 0
  • 0

3D printing materials steel technology breakthrough which can print any shape car parts without defects

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



Texas A & M University, AFR and other researchers developed a process for generating defect-freeof steel parts. Martensitic stainless steels provide a better alternative for similar metals.

Stiff steel is widely utilized, however it is often very costly. Martensitic, with a price of less than one dollar a pound, is the exception. These hard steels can also be printed using a 3D printer framework.

Is martensitic steel a type of iron?

Over thousands of decades, metallurgists worked to adjust the steel's properties in order for it to perform better. Martensitic, a steel with higher strength but lower costs, is still the best.

Steel is an alloy of carbon and iron. This is called high-temperature quenching. Martensitic Steel can be made by using this method. Martensitic iron's special strength can be achieved by a sudden cooling process.


3D Printing with Martensitic Steel powder. An enlarged image of the steel powder is shown in the photo.

This industry is highly in demand for hardened iron, but the price of this steel is excessive. Martensitic iron, however, has a lower cost than hardened steel and costs less that one dollar per pound.

Martensitic steel can be used in areas where it is necessary to produce light and strong parts, without raising costs.

Technology improvement 3D printing of high strength, non-defective martensitic metal

Martensitic Steel can be used in multiple applications. Especially low-alloy martensitic martensitic has to be assembled into various shapes and sizes for different purposes. 3D printing or additive manufacturing is an option. To create complicated parts, one layer of metal powder can easily be heated with a high-energy laser beam. For the final 3D printed object, you can combine and stack each layer.

Laser-based 3D printing of martensitic stainless steel can lead to defects, such as pores.

In order to resolve this issue, the team of researchers needed to work from scratch and determine the settings that would suppress the defects.

A mathematical model of the melting behavior of single layers of martensitic metal powder was used first in this experiment. Next they compared the predicted model predictions and observed defect types to refine the printing structure. With many iterations they were able to make better predictions. According to the researchers, this technique does not need additional experiments. It saves you time and energy.


A study by the US Air Force Research Base was done on the samples. It found that the displays' mechanical properties are excellent.

The initial process was only for martensitic-grade steel. However, this technology has become so versatile that it can be used to produce complex parts from other metals as well as alloys.

This innovation is crucial for all industries involved in metal additive production. You can choose to use a single part, like a screw, or something more complicated such as landing gear or the gearbox. It will be more accurate in the future.

This revolutionary prediction technology cuts down the time taken to find and evaluate the optimal printing parameters for the martensitic alloy steel. Unfortunately, it can take a lot of time and effort to evaluate the potential effects of different laser settings. The result is simple, and it's easy to follow. This process involves combining modeling and experiments in order to decide which setting works best for printing 3D martensitic-steel.


Inquiry us

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

Supply Magnesium Granules Mg Granules 99.95%

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Our Latest Products

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size : 100mesh Purity: 99.99% About Germanium Sulfide (GeS2) Powder: Germanium Sulfid…

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Molybdenum powder boride is a combination of molybdenum with boron. The chemical formula for molybdenum is MoB2, and the molecular weight is 202.69. Purity: >99%Particle size : 5-10um Molybdenum Boride MoB2 Pulp : Molybdenum-boride consists of moly…

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries. Metal…